Skip to content

Ollama Provider API Reference

The OllamaProvider class implements the AIProvider interface for the Ollama service. It provides methods for text generation and chat functionality using locally hosted models through Ollama.

Class Definition

Bases: AIProvider

Ollama-specific implementation of the AIProvider abstract base class.

This class provides methods to interact with Ollama's models for text generation and chat functionality.

Attributes:

Name Type Description
client OllamaClientProtocol

The Ollama client used for making API calls.

Parameters:

Name Type Description Default
host Optional[str]

The host address for the Ollama server. If not provided, the default Ollama client will be used.

None

Raises:

Type Description
ImportError

If the Ollama package is not installed.

Example

Initialize the Ollama provider:

provider = Provider(host="http://localhost:11434")

Source code in clientai/ollama/provider.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
class Provider(AIProvider):
    """
    Ollama-specific implementation of the AIProvider abstract base class.

    This class provides methods to interact with Ollama's models for
    text generation and chat functionality.

    Attributes:
        client: The Ollama client used for making API calls.

    Args:
        host: The host address for the Ollama server.
            If not provided, the default Ollama client will be used.

    Raises:
        ImportError: If the Ollama package is not installed.

    Example:
        Initialize the Ollama provider:
        ```python
        provider = Provider(host="http://localhost:11434")
        ```
    """

    def __init__(self, host: Optional[str] = None):
        if not OLLAMA_INSTALLED or Client is None:
            raise ImportError(
                "The ollama package is not installed. "
                "Please install it with 'pip install clientai[ollama]'."
            )
        self.client: OllamaClientProtocol = cast(
            OllamaClientProtocol, Client(host=host) if host else ollama
        )

    def _prepare_options(
        self,
        json_output: bool = False,
        system_prompt: Optional[str] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        """
        Prepare the options dictionary for Ollama API calls.

        Args:
            json_output: If True, set format to "json"
            system_prompt: Optional system prompt
            temperature: Optional temperature value
            top_p: Optional top-p value
            **kwargs: Additional options to include

        Returns:
            Dict[str, Any]: The prepared options dictionary
        """
        options: Dict[str, Any] = {}

        if json_output:
            options["format"] = "json"
        if system_prompt:
            options["system"] = system_prompt
        if temperature is not None:
            options["temperature"] = temperature
        if top_p is not None:
            options["top_p"] = top_p

        options.update(kwargs)

        return options

    def _validate_temperature(self, temperature: Optional[float]) -> None:
        """[previous implementation remains the same]"""
        if temperature is not None:
            if not isinstance(temperature, (int, float)):  # noqa: UP038
                raise InvalidRequestError(
                    "Temperature must be a number between 0 and 2"
                )
            if temperature < 0 or temperature > 2:
                raise InvalidRequestError(
                    f"Temperature must be between 0 and 2, got {temperature}"
                )

    def _validate_top_p(self, top_p: Optional[float]) -> None:
        """[previous implementation remains the same]"""
        if top_p is not None:
            if not isinstance(top_p, (int, float)):  # noqa: UP038
                raise InvalidRequestError(
                    "Top-p must be a number between 0 and 1"
                )
            if top_p < 0 or top_p > 1:
                raise InvalidRequestError(
                    f"Top-p must be between 0 and 1, got {top_p}"
                )

    def _stream_generate_response(
        self,
        stream: Iterator[OllamaStreamResponse],
        return_full_response: bool,
    ) -> Iterator[Union[str, OllamaStreamResponse]]:
        """
        Process the streaming response from Ollama API for text generation.

        Args:
            stream: The stream of responses from Ollama API.
            return_full_response: If True, yield full response objects.

        Yields:
            Union[str, OllamaStreamResponse]: Processed content or
                                              full response objects.
        """
        for chunk in stream:
            if return_full_response:
                yield chunk
            else:
                yield chunk["response"]

    def _stream_chat_response(
        self,
        stream: Iterator[OllamaChatResponse],
        return_full_response: bool,
    ) -> Iterator[Union[str, OllamaChatResponse]]:
        """
        Process the streaming response from Ollama API for chat.

        Args:
            stream: The stream of responses from Ollama API.
            return_full_response: If True, yield full response objects.

        Yields:
            Union[str, OllamaChatResponse]: Processed content or
                                            full response objects.
        """
        for chunk in stream:
            if return_full_response:
                yield chunk
            else:
                yield chunk["message"]["content"]

    def _map_exception_to_clientai_error(self, e: Exception) -> ClientAIError:
        """
        Maps an Ollama exception to the appropriate ClientAI exception.

        Args:
            e (Exception): The exception caught during the API call.

        Returns:
            ClientAIError: An instance of the appropriate ClientAI exception.
        """
        message = str(e)

        if isinstance(e, ollama.RequestError):
            if "authentication" in message.lower():
                return AuthenticationError(
                    message, status_code=401, original_error=e
                )
            elif "rate limit" in message.lower():
                return RateLimitError(
                    message, status_code=429, original_error=e
                )
            elif "not found" in message.lower():
                return ModelError(message, status_code=404, original_error=e)
            else:
                return InvalidRequestError(
                    message, status_code=400, original_error=e
                )
        elif isinstance(e, ollama.ResponseError):
            if "timeout" in message.lower() or "timed out" in message.lower():
                return TimeoutError(message, status_code=408, original_error=e)
            else:
                return APIError(message, status_code=500, original_error=e)
        else:
            return ClientAIError(message, status_code=500, original_error=e)

    def generate_text(
        self,
        prompt: str,
        model: str,
        system_prompt: Optional[str] = None,
        return_full_response: bool = False,
        stream: bool = False,
        json_output: bool = False,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        **kwargs: Any,
    ) -> OllamaGenericResponse:
        """
        Generate text based on a given prompt using a specified Ollama model.

        Args:
            prompt: The input prompt for text generation.
            model: The name or identifier of the Ollama model to use.
            system_prompt: Optional system prompt to guide model behavior.
                           Uses Ollama's native system parameter.
            return_full_response: If True, return the full response object.
                If False, return only the generated text.
            stream: If True, return an iterator for streaming responses.
            json_output: If True, set format="json" to get JSON-formatted
                responses using Ollama's native JSON support. The prompt
                should specify the desired JSON structure.
            temperature: Optional temperature value for generation (0.0-2.0).
                Controls randomness in the output.
            top_p: Optional top-p value for nucleus sampling (0.0-1.0).
                Controls diversity of the output.
            **kwargs: Additional keyword arguments to pass to the Ollama API.

        Returns:
            OllamaGenericResponse: The generated text, full response object,
            or an iterator for streaming responses.

        Example:
            Generate text (text only):
            ```python
            response = provider.generate_text(
                "Explain machine learning",
                model="llama2",
            )
            print(response)
            ```

            Generate creative text with high temperature:
            ```python
            response = provider.generate_text(
                "Write a story about a space adventure",
                model="llama2",
                temperature=0.8,
                top_p=0.9
            )
            print(response)
            ```

            Generate JSON output:
            ```python
            response = provider.generate_text(
                '''Create a user profile with:
                {
                    "name": "A random name",
                    "age": "A random age between 20-80",
                    "occupation": "A random occupation"
                }''',
                model="llama2",
                json_output=True
            )
            print(response)  # Will be JSON formatted
            ```
        """
        try:
            self._validate_temperature(temperature)
            self._validate_top_p(top_p)

            options = self._prepare_options(
                json_output=json_output,
                system_prompt=system_prompt,
                temperature=temperature,
                top_p=top_p,
                **kwargs,
            )

            response = self.client.generate(
                model=model,
                prompt=prompt,
                stream=stream,
                options=options,
            )

            if stream:
                return cast(
                    OllamaGenericResponse,
                    self._stream_generate_response(
                        cast(Iterator[OllamaStreamResponse], response),
                        return_full_response,
                    ),
                )
            else:
                response = cast(OllamaResponse, response)
                if return_full_response:
                    return response
                else:
                    return response["response"]

        except Exception as e:
            raise self._map_exception_to_clientai_error(e)

    def chat(
        self,
        messages: List[Message],
        model: str,
        system_prompt: Optional[str] = None,
        return_full_response: bool = False,
        stream: bool = False,
        json_output: bool = False,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        **kwargs: Any,
    ) -> OllamaGenericResponse:
        """
        Engage in a chat conversation using a specified Ollama model.

        Args:
            messages: A list of message dictionaries, each containing
                      'role' and 'content'.
            model: The name or identifier of the Ollama model to use.
            system_prompt: Optional system prompt to guide model behavior.
                           If provided, will be inserted at the start of the
                           conversation.
            return_full_response: If True, return the full response object.
                If False, return only the generated text.
            stream: If True, return an iterator for streaming responses.
            json_output: If True, set format="json" to get JSON-formatted
                responses using Ollama's native JSON support. The messages
                should specify the desired JSON structure.
            temperature: Optional temperature value for generation (0.0-2.0).
                Controls randomness in the output.
            top_p: Optional top-p value for nucleus sampling (0.0-1.0).
                Controls diversity of the output.
            **kwargs: Additional keyword arguments to pass to the Ollama API.

        Returns:
            OllamaGenericResponse: The chat response, full response object,
            or an iterator for streaming responses.

        Example:
            Chat with default settings:
            ```python
            messages = [
                {"role": "user", "content": "What is machine learning?"},
                {"role": "assistant", "content": "Machine learning is..."},
                {"role": "user", "content": "Give me some examples"}
            ]
            response = provider.chat(
                messages,
                model="llama2",
            )
            print(response)
            ```

            Creative chat with high temperature:
            ```python
            response = provider.chat(
                messages,
                model="llama2",
                temperature=0.8,
                top_p=0.9
            )
            print(response)
            ```

            Chat with JSON output:
            ```python
            messages = [
                {"role": "user", "content": '''Create a user profile with:
                {
                    "name": "A random name",
                    "age": "A random age between 20-80",
                    "occupation": "A random occupation"
                }'''}
            ]
            response = provider.chat(
                messages,
                model="llama2",
                json_output=True
            )
            print(response)  # Will be JSON formatted
            ```
        """
        try:
            self._validate_temperature(temperature)
            self._validate_top_p(top_p)

            chat_messages = messages.copy()
            if system_prompt:
                chat_messages.insert(
                    0, {"role": "system", "content": system_prompt}
                )

            options = self._prepare_options(
                json_output=json_output,
                temperature=temperature,
                top_p=top_p,
                **kwargs,
            )

            response = self.client.chat(
                model=model,
                messages=chat_messages,
                stream=stream,
                options=options,
            )

            if stream:
                return cast(
                    OllamaGenericResponse,
                    self._stream_chat_response(
                        cast(Iterator[OllamaChatResponse], response),
                        return_full_response,
                    ),
                )
            else:
                response = cast(OllamaChatResponse, response)
                if return_full_response:
                    return response
                else:
                    return response["message"]["content"]

        except Exception as e:
            raise self._map_exception_to_clientai_error(e)

chat(messages, model, system_prompt=None, return_full_response=False, stream=False, json_output=False, temperature=None, top_p=None, **kwargs)

Engage in a chat conversation using a specified Ollama model.

Parameters:

Name Type Description Default
messages List[Message]

A list of message dictionaries, each containing 'role' and 'content'.

required
model str

The name or identifier of the Ollama model to use.

required
system_prompt Optional[str]

Optional system prompt to guide model behavior. If provided, will be inserted at the start of the conversation.

None
return_full_response bool

If True, return the full response object. If False, return only the generated text.

False
stream bool

If True, return an iterator for streaming responses.

False
json_output bool

If True, set format="json" to get JSON-formatted responses using Ollama's native JSON support. The messages should specify the desired JSON structure.

False
temperature Optional[float]

Optional temperature value for generation (0.0-2.0). Controls randomness in the output.

None
top_p Optional[float]

Optional top-p value for nucleus sampling (0.0-1.0). Controls diversity of the output.

None
**kwargs Any

Additional keyword arguments to pass to the Ollama API.

{}

Returns:

Name Type Description
OllamaGenericResponse OllamaGenericResponse

The chat response, full response object,

OllamaGenericResponse

or an iterator for streaming responses.

Example

Chat with default settings:

messages = [
    {"role": "user", "content": "What is machine learning?"},
    {"role": "assistant", "content": "Machine learning is..."},
    {"role": "user", "content": "Give me some examples"}
]
response = provider.chat(
    messages,
    model="llama2",
)
print(response)

Creative chat with high temperature:

response = provider.chat(
    messages,
    model="llama2",
    temperature=0.8,
    top_p=0.9
)
print(response)

Chat with JSON output:

messages = [
    {"role": "user", "content": '''Create a user profile with:
    {
        "name": "A random name",
        "age": "A random age between 20-80",
        "occupation": "A random occupation"
    }'''}
]
response = provider.chat(
    messages,
    model="llama2",
    json_output=True
)
print(response)  # Will be JSON formatted

Source code in clientai/ollama/provider.py
def chat(
    self,
    messages: List[Message],
    model: str,
    system_prompt: Optional[str] = None,
    return_full_response: bool = False,
    stream: bool = False,
    json_output: bool = False,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    **kwargs: Any,
) -> OllamaGenericResponse:
    """
    Engage in a chat conversation using a specified Ollama model.

    Args:
        messages: A list of message dictionaries, each containing
                  'role' and 'content'.
        model: The name or identifier of the Ollama model to use.
        system_prompt: Optional system prompt to guide model behavior.
                       If provided, will be inserted at the start of the
                       conversation.
        return_full_response: If True, return the full response object.
            If False, return only the generated text.
        stream: If True, return an iterator for streaming responses.
        json_output: If True, set format="json" to get JSON-formatted
            responses using Ollama's native JSON support. The messages
            should specify the desired JSON structure.
        temperature: Optional temperature value for generation (0.0-2.0).
            Controls randomness in the output.
        top_p: Optional top-p value for nucleus sampling (0.0-1.0).
            Controls diversity of the output.
        **kwargs: Additional keyword arguments to pass to the Ollama API.

    Returns:
        OllamaGenericResponse: The chat response, full response object,
        or an iterator for streaming responses.

    Example:
        Chat with default settings:
        ```python
        messages = [
            {"role": "user", "content": "What is machine learning?"},
            {"role": "assistant", "content": "Machine learning is..."},
            {"role": "user", "content": "Give me some examples"}
        ]
        response = provider.chat(
            messages,
            model="llama2",
        )
        print(response)
        ```

        Creative chat with high temperature:
        ```python
        response = provider.chat(
            messages,
            model="llama2",
            temperature=0.8,
            top_p=0.9
        )
        print(response)
        ```

        Chat with JSON output:
        ```python
        messages = [
            {"role": "user", "content": '''Create a user profile with:
            {
                "name": "A random name",
                "age": "A random age between 20-80",
                "occupation": "A random occupation"
            }'''}
        ]
        response = provider.chat(
            messages,
            model="llama2",
            json_output=True
        )
        print(response)  # Will be JSON formatted
        ```
    """
    try:
        self._validate_temperature(temperature)
        self._validate_top_p(top_p)

        chat_messages = messages.copy()
        if system_prompt:
            chat_messages.insert(
                0, {"role": "system", "content": system_prompt}
            )

        options = self._prepare_options(
            json_output=json_output,
            temperature=temperature,
            top_p=top_p,
            **kwargs,
        )

        response = self.client.chat(
            model=model,
            messages=chat_messages,
            stream=stream,
            options=options,
        )

        if stream:
            return cast(
                OllamaGenericResponse,
                self._stream_chat_response(
                    cast(Iterator[OllamaChatResponse], response),
                    return_full_response,
                ),
            )
        else:
            response = cast(OllamaChatResponse, response)
            if return_full_response:
                return response
            else:
                return response["message"]["content"]

    except Exception as e:
        raise self._map_exception_to_clientai_error(e)

generate_text(prompt, model, system_prompt=None, return_full_response=False, stream=False, json_output=False, temperature=None, top_p=None, **kwargs)

Generate text based on a given prompt using a specified Ollama model.

Parameters:

Name Type Description Default
prompt str

The input prompt for text generation.

required
model str

The name or identifier of the Ollama model to use.

required
system_prompt Optional[str]

Optional system prompt to guide model behavior. Uses Ollama's native system parameter.

None
return_full_response bool

If True, return the full response object. If False, return only the generated text.

False
stream bool

If True, return an iterator for streaming responses.

False
json_output bool

If True, set format="json" to get JSON-formatted responses using Ollama's native JSON support. The prompt should specify the desired JSON structure.

False
temperature Optional[float]

Optional temperature value for generation (0.0-2.0). Controls randomness in the output.

None
top_p Optional[float]

Optional top-p value for nucleus sampling (0.0-1.0). Controls diversity of the output.

None
**kwargs Any

Additional keyword arguments to pass to the Ollama API.

{}

Returns:

Name Type Description
OllamaGenericResponse OllamaGenericResponse

The generated text, full response object,

OllamaGenericResponse

or an iterator for streaming responses.

Example

Generate text (text only):

response = provider.generate_text(
    "Explain machine learning",
    model="llama2",
)
print(response)

Generate creative text with high temperature:

response = provider.generate_text(
    "Write a story about a space adventure",
    model="llama2",
    temperature=0.8,
    top_p=0.9
)
print(response)

Generate JSON output:

response = provider.generate_text(
    '''Create a user profile with:
    {
        "name": "A random name",
        "age": "A random age between 20-80",
        "occupation": "A random occupation"
    }''',
    model="llama2",
    json_output=True
)
print(response)  # Will be JSON formatted

Source code in clientai/ollama/provider.py
def generate_text(
    self,
    prompt: str,
    model: str,
    system_prompt: Optional[str] = None,
    return_full_response: bool = False,
    stream: bool = False,
    json_output: bool = False,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    **kwargs: Any,
) -> OllamaGenericResponse:
    """
    Generate text based on a given prompt using a specified Ollama model.

    Args:
        prompt: The input prompt for text generation.
        model: The name or identifier of the Ollama model to use.
        system_prompt: Optional system prompt to guide model behavior.
                       Uses Ollama's native system parameter.
        return_full_response: If True, return the full response object.
            If False, return only the generated text.
        stream: If True, return an iterator for streaming responses.
        json_output: If True, set format="json" to get JSON-formatted
            responses using Ollama's native JSON support. The prompt
            should specify the desired JSON structure.
        temperature: Optional temperature value for generation (0.0-2.0).
            Controls randomness in the output.
        top_p: Optional top-p value for nucleus sampling (0.0-1.0).
            Controls diversity of the output.
        **kwargs: Additional keyword arguments to pass to the Ollama API.

    Returns:
        OllamaGenericResponse: The generated text, full response object,
        or an iterator for streaming responses.

    Example:
        Generate text (text only):
        ```python
        response = provider.generate_text(
            "Explain machine learning",
            model="llama2",
        )
        print(response)
        ```

        Generate creative text with high temperature:
        ```python
        response = provider.generate_text(
            "Write a story about a space adventure",
            model="llama2",
            temperature=0.8,
            top_p=0.9
        )
        print(response)
        ```

        Generate JSON output:
        ```python
        response = provider.generate_text(
            '''Create a user profile with:
            {
                "name": "A random name",
                "age": "A random age between 20-80",
                "occupation": "A random occupation"
            }''',
            model="llama2",
            json_output=True
        )
        print(response)  # Will be JSON formatted
        ```
    """
    try:
        self._validate_temperature(temperature)
        self._validate_top_p(top_p)

        options = self._prepare_options(
            json_output=json_output,
            system_prompt=system_prompt,
            temperature=temperature,
            top_p=top_p,
            **kwargs,
        )

        response = self.client.generate(
            model=model,
            prompt=prompt,
            stream=stream,
            options=options,
        )

        if stream:
            return cast(
                OllamaGenericResponse,
                self._stream_generate_response(
                    cast(Iterator[OllamaStreamResponse], response),
                    return_full_response,
                ),
            )
        else:
            response = cast(OllamaResponse, response)
            if return_full_response:
                return response
            else:
                return response["response"]

    except Exception as e:
        raise self._map_exception_to_clientai_error(e)