Skip to content

Groq Provider API Reference

The GroqProvider class implements the AIProvider interface for the Groq service. It provides methods for text generation and chat functionality using Groq's models.

Class Definition

Bases: AIProvider

Groq-specific implementation of the AIProvider abstract base class.

This class provides methods to interact with Groq's models for text generation and chat functionality.

Attributes:

Name Type Description
client GroqClientProtocol

The Groq client used for making API calls.

Parameters:

Name Type Description Default
api_key str

The API key for authenticating with Groq.

required

Raises:

Type Description
ImportError

If the Groq package is not installed.

Example

Initialize the Groq provider:

provider = Provider(api_key="your-groq-api-key")

Source code in clientai/groq/provider.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
class Provider(AIProvider):
    """
    Groq-specific implementation of the AIProvider abstract base class.

    This class provides methods to interact with Groq's models for
    text generation and chat functionality.

    Attributes:
        client: The Groq client used for making API calls.

    Args:
        api_key: The API key for authenticating with Groq.

    Raises:
        ImportError: If the Groq package is not installed.

    Example:
        Initialize the Groq provider:
        ```python
        provider = Provider(api_key="your-groq-api-key")
        ```
    """

    def __init__(self, api_key: str):
        if not GROQ_INSTALLED or Client is None:
            raise ImportError(
                "The groq package is not installed. "
                "Please install it with 'pip install clientai[groq]'."
            )
        self.client: GroqClientProtocol = cast(
            GroqClientProtocol, Client(api_key=api_key)
        )

    def _validate_temperature(self, temperature: Optional[float]) -> None:
        """Validate the temperature parameter."""
        if temperature is not None:
            if not isinstance(temperature, (int, float)):  # noqa: UP038
                raise InvalidRequestError(
                    "Temperature must be a number between 0 and 2"
                )
            if temperature < 0 or temperature > 2:
                raise InvalidRequestError(
                    f"Temperature must be between 0 and 2, got {temperature}"
                )

    def _validate_top_p(self, top_p: Optional[float]) -> None:
        """Validate the top_p parameter."""
        if top_p is not None:
            if not isinstance(top_p, (int, float)):  # noqa: UP038
                raise InvalidRequestError(
                    "Top-p must be a number between 0 and 1"
                )
            if top_p < 0 or top_p > 1:
                raise InvalidRequestError(
                    f"Top-p must be between 0 and 1, got {top_p}"
                )

    def _stream_response(
        self,
        stream: Iterator[GroqStreamResponse],
        return_full_response: bool,
    ) -> Iterator[Union[str, GroqStreamResponse]]:
        """
        Process the streaming response from Groq API.

        Args:
            stream: The stream of responses from Groq API.
            return_full_response: If True, yield full response objects.

        Yields:
            Union[str, GroqStreamResponse]: Processed content or
                                            full response objects.
        """
        for chunk in stream:
            if return_full_response:
                yield chunk
            else:
                content = chunk.choices[0].delta.content
                if content:
                    yield content

    def _map_exception_to_clientai_error(self, e: Exception) -> ClientAIError:
        """
        Maps a Groq exception to the appropriate ClientAI exception.

        Args:
            e (Exception): The exception caught during the API call.

        Returns:
            ClientAIError: An instance of the appropriate ClientAI exception.
        """
        error_message = str(e)

        if isinstance(e, (GroqAuthenticationError, PermissionDeniedError)):  # noqa: UP038
            return AuthenticationError(
                error_message,
                status_code=getattr(e, "status_code", 401),
                original_error=e,
            )
        elif isinstance(e, GroqRateLimitError):
            return RateLimitError(
                error_message, status_code=429, original_error=e
            )
        elif isinstance(e, NotFoundError):
            return ModelError(error_message, status_code=404, original_error=e)
        elif isinstance(  # noqa: UP038
            e, (BadRequestError, UnprocessableEntityError, ConflictError)
        ):
            return InvalidRequestError(
                error_message,
                status_code=getattr(e, "status_code", 400),
                original_error=e,
            )
        elif isinstance(e, APITimeoutError):
            return TimeoutError(
                error_message, status_code=408, original_error=e
            )
        elif isinstance(e, InternalServerError):
            return APIError(
                error_message,
                status_code=getattr(e, "status_code", 500),
                original_error=e,
            )
        elif isinstance(e, APIStatusError):
            status = getattr(e, "status_code", 500)
            if status >= 500:
                return APIError(
                    error_message, status_code=status, original_error=e
                )
            return InvalidRequestError(
                error_message, status_code=status, original_error=e
            )

        return ClientAIError(error_message, status_code=500, original_error=e)

    def generate_text(
        self,
        prompt: str,
        model: str,
        system_prompt: Optional[str] = None,
        return_full_response: bool = False,
        stream: bool = False,
        json_output: bool = False,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        **kwargs: Any,
    ) -> GroqGenericResponse:
        """
        Generate text based on a given prompt using a specified Groq model.

        Args:
            prompt: The input prompt for text generation.
            model: The name or identifier of the Groq model to use.
            system_prompt: Optional system prompt to guide model behavior.
                           If provided, will be added as a system message
                           before the prompt.
            return_full_response: If True, return the full response object.
                If False, return only the generated text. Defaults to False.
            stream: If True, return an iterator for streaming responses.
                Defaults to False.
            json_output: If True, format the response as valid JSON using
                Groq's native JSON mode (beta). Note that this is incompatible
                with streaming and stop sequences. Will return a 400 error with
                code "json_validate_failed" if JSON generation fails. Defaults
                to False.
            temperature: Optional temperature value (0.0-2.0).
                         Controls randomness in generation.
                         Lower values make the output more focused
                         and deterministic, higher values make it
                         more creative.
            top_p: Optional nucleus sampling parameter (0.0-1.0).
                   Controls diversity by limiting cumulative probability
                   in token selection.
            **kwargs: Additional keyword arguments to pass to the Groq API.

        Returns:
            GroqGenericResponse: The generated text, full response object,
            or an iterator for streaming responses.

        Raises:
            InvalidRequestError: If json_output and stream are both True.
            ClientAIError: If an error occurs during the API call.

        Example:
            Generate text (text only):
            ```python
            response = provider.generate_text(
                "Explain quantum computing",
                model="llama3-8b-8192",
            )
            print(response)
            ```

            Generate text (full response):
            ```python
            response = provider.generate_text(
                "Explain quantum computing",
                model="llama3-8b-8192",
                return_full_response=True
            )
            print(response.choices[0].message.content)
            ```

            Generate JSON output:
            ```python
            response = provider.generate_text(
                '''Create a user profile with:
                {
                    "name": "A random name",
                    "age": "A random age between 20-80",
                    "occupation": "A random occupation"
                }''',
                model="llama3-8b-8192",
                json_output=True
            )
            print(response)  # Will be valid JSON
            ```
        """
        try:
            self._validate_temperature(temperature)
            self._validate_top_p(top_p)

            messages: List[Optional[Message]] = []
            if system_prompt:
                messages.append({"role": "system", "content": system_prompt})
            messages.append({"role": "user", "content": prompt})

            completion_kwargs: dict[str, Any] = {
                "model": model,
                "messages": messages,
                "stream": stream,
            }
            if json_output:
                completion_kwargs["response_format"] = {"type": "json_object"}
            if temperature is not None:
                completion_kwargs["temperature"] = temperature
            if top_p is not None:
                completion_kwargs["top_p"] = top_p
            completion_kwargs.update(kwargs)

            response = self.client.chat.completions.create(**completion_kwargs)

            if stream:
                return cast(
                    GroqGenericResponse,
                    self._stream_response(
                        cast(Iterator[GroqStreamResponse], response),
                        return_full_response,
                    ),
                )
            else:
                response = cast(GroqResponse, response)
                if return_full_response:
                    return response
                else:
                    return cast(str, response.choices[0].message.content)

        except Exception as e:
            raise self._map_exception_to_clientai_error(e)

    def chat(
        self,
        messages: List[Message],
        model: str,
        system_prompt: Optional[str] = None,
        return_full_response: bool = False,
        stream: bool = False,
        json_output: bool = False,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        **kwargs: Any,
    ) -> GroqGenericResponse:
        """
        Engage in a chat conversation using a specified Groq model.

        Args:
            messages: A list of message dictionaries, each containing
                      'role' and 'content'.
            model: The name or identifier of the Groq model to use.
            system_prompt: Optional system prompt to guide model behavior.
                           If provided, will be inserted at the start of
                           the conversation.
            return_full_response: If True, return the full response object.
                If False, return only the chat content.
            stream: If True, return an iterator for streaming responses.
            json_output: If True, format the response as valid JSON using
                Groq's native JSON mode (beta). Note that this is incompatible
                with streaming and stop sequences. Will return a 400 error with
                code "json_validate_failed" if JSON generation fails.
                Defaults to False.
            temperature: Optional temperature value (0.0-2.0).
                         Controls randomness in generation.
                         Lower values make the output more focused
                         and deterministic, higher values make it
                         more creative.
            top_p: Optional nucleus sampling parameter (0.0-1.0).
                   Controls diversity by limiting cumulative probability
                   in token selection.
            **kwargs: Additional keyword arguments to pass to the Groq API.

        Returns:
            GroqGenericResponse: The chat response, full response object,
            or an iterator for streaming responses.

        Raises:
            InvalidRequestError: If json_output and stream are both True.
            ClientAIError: If an error occurs during the API call.

        Example:
            Chat (message content only):
            ```python
            messages = [
                {"role": "user", "content": "What is quantum computing?"},
                {"role": "assistant", "content": "Quantum computing uses..."},
                {"role": "user", "content": "What are its applications?"}
            ]
            response = provider.chat(
                messages,
                model="llama3-8b-8192",
            )
            print(response)
            ```

            Chat (full response):
            ```python
            response = provider.chat(
                messages,
                model="llama3-8b-8192",
                return_full_response=True
            )
            print(response.choices[0].message.content)
            ```

            Chat with JSON output:
            ```python
            messages = [
                {"role": "user", "content": '''Generate a user profile with:
                {
                    "name": "A random name",
                    "age": "A random age between 20-80",
                    "occupation": "A random occupation"
                }'''}
            ]
            response = provider.chat(
                messages,
                model="llama3-8b-8192",
                json_output=True
            )
            print(response)  # Will be valid JSON
            ```
        """
        try:
            self._validate_temperature(temperature)
            self._validate_top_p(top_p)

            chat_messages = messages.copy()
            if system_prompt:
                chat_messages.insert(
                    0, {"role": "system", "content": system_prompt}
                )

            completion_kwargs: dict[str, Any] = {
                "model": model,
                "messages": chat_messages,
                "stream": stream,
            }
            if json_output:
                completion_kwargs["response_format"] = {"type": "json_object"}
            if temperature is not None:
                completion_kwargs["temperature"] = temperature
            if top_p is not None:
                completion_kwargs["top_p"] = top_p
            completion_kwargs.update(kwargs)

            response = self.client.chat.completions.create(**completion_kwargs)

            if stream:
                return cast(
                    GroqGenericResponse,
                    self._stream_response(
                        cast(Iterator[GroqStreamResponse], response),
                        return_full_response,
                    ),
                )
            else:
                response = cast(GroqResponse, response)
                if return_full_response:
                    return response
                else:
                    return cast(str, response.choices[0].message.content)

        except Exception as e:
            raise self._map_exception_to_clientai_error(e)

chat(messages, model, system_prompt=None, return_full_response=False, stream=False, json_output=False, temperature=None, top_p=None, **kwargs)

Engage in a chat conversation using a specified Groq model.

Parameters:

Name Type Description Default
messages List[Message]

A list of message dictionaries, each containing 'role' and 'content'.

required
model str

The name or identifier of the Groq model to use.

required
system_prompt Optional[str]

Optional system prompt to guide model behavior. If provided, will be inserted at the start of the conversation.

None
return_full_response bool

If True, return the full response object. If False, return only the chat content.

False
stream bool

If True, return an iterator for streaming responses.

False
json_output bool

If True, format the response as valid JSON using Groq's native JSON mode (beta). Note that this is incompatible with streaming and stop sequences. Will return a 400 error with code "json_validate_failed" if JSON generation fails. Defaults to False.

False
temperature Optional[float]

Optional temperature value (0.0-2.0). Controls randomness in generation. Lower values make the output more focused and deterministic, higher values make it more creative.

None
top_p Optional[float]

Optional nucleus sampling parameter (0.0-1.0). Controls diversity by limiting cumulative probability in token selection.

None
**kwargs Any

Additional keyword arguments to pass to the Groq API.

{}

Returns:

Name Type Description
GroqGenericResponse GroqGenericResponse

The chat response, full response object,

GroqGenericResponse

or an iterator for streaming responses.

Raises:

Type Description
InvalidRequestError

If json_output and stream are both True.

ClientAIError

If an error occurs during the API call.

Example

Chat (message content only):

messages = [
    {"role": "user", "content": "What is quantum computing?"},
    {"role": "assistant", "content": "Quantum computing uses..."},
    {"role": "user", "content": "What are its applications?"}
]
response = provider.chat(
    messages,
    model="llama3-8b-8192",
)
print(response)

Chat (full response):

response = provider.chat(
    messages,
    model="llama3-8b-8192",
    return_full_response=True
)
print(response.choices[0].message.content)

Chat with JSON output:

messages = [
    {"role": "user", "content": '''Generate a user profile with:
    {
        "name": "A random name",
        "age": "A random age between 20-80",
        "occupation": "A random occupation"
    }'''}
]
response = provider.chat(
    messages,
    model="llama3-8b-8192",
    json_output=True
)
print(response)  # Will be valid JSON

Source code in clientai/groq/provider.py
def chat(
    self,
    messages: List[Message],
    model: str,
    system_prompt: Optional[str] = None,
    return_full_response: bool = False,
    stream: bool = False,
    json_output: bool = False,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    **kwargs: Any,
) -> GroqGenericResponse:
    """
    Engage in a chat conversation using a specified Groq model.

    Args:
        messages: A list of message dictionaries, each containing
                  'role' and 'content'.
        model: The name or identifier of the Groq model to use.
        system_prompt: Optional system prompt to guide model behavior.
                       If provided, will be inserted at the start of
                       the conversation.
        return_full_response: If True, return the full response object.
            If False, return only the chat content.
        stream: If True, return an iterator for streaming responses.
        json_output: If True, format the response as valid JSON using
            Groq's native JSON mode (beta). Note that this is incompatible
            with streaming and stop sequences. Will return a 400 error with
            code "json_validate_failed" if JSON generation fails.
            Defaults to False.
        temperature: Optional temperature value (0.0-2.0).
                     Controls randomness in generation.
                     Lower values make the output more focused
                     and deterministic, higher values make it
                     more creative.
        top_p: Optional nucleus sampling parameter (0.0-1.0).
               Controls diversity by limiting cumulative probability
               in token selection.
        **kwargs: Additional keyword arguments to pass to the Groq API.

    Returns:
        GroqGenericResponse: The chat response, full response object,
        or an iterator for streaming responses.

    Raises:
        InvalidRequestError: If json_output and stream are both True.
        ClientAIError: If an error occurs during the API call.

    Example:
        Chat (message content only):
        ```python
        messages = [
            {"role": "user", "content": "What is quantum computing?"},
            {"role": "assistant", "content": "Quantum computing uses..."},
            {"role": "user", "content": "What are its applications?"}
        ]
        response = provider.chat(
            messages,
            model="llama3-8b-8192",
        )
        print(response)
        ```

        Chat (full response):
        ```python
        response = provider.chat(
            messages,
            model="llama3-8b-8192",
            return_full_response=True
        )
        print(response.choices[0].message.content)
        ```

        Chat with JSON output:
        ```python
        messages = [
            {"role": "user", "content": '''Generate a user profile with:
            {
                "name": "A random name",
                "age": "A random age between 20-80",
                "occupation": "A random occupation"
            }'''}
        ]
        response = provider.chat(
            messages,
            model="llama3-8b-8192",
            json_output=True
        )
        print(response)  # Will be valid JSON
        ```
    """
    try:
        self._validate_temperature(temperature)
        self._validate_top_p(top_p)

        chat_messages = messages.copy()
        if system_prompt:
            chat_messages.insert(
                0, {"role": "system", "content": system_prompt}
            )

        completion_kwargs: dict[str, Any] = {
            "model": model,
            "messages": chat_messages,
            "stream": stream,
        }
        if json_output:
            completion_kwargs["response_format"] = {"type": "json_object"}
        if temperature is not None:
            completion_kwargs["temperature"] = temperature
        if top_p is not None:
            completion_kwargs["top_p"] = top_p
        completion_kwargs.update(kwargs)

        response = self.client.chat.completions.create(**completion_kwargs)

        if stream:
            return cast(
                GroqGenericResponse,
                self._stream_response(
                    cast(Iterator[GroqStreamResponse], response),
                    return_full_response,
                ),
            )
        else:
            response = cast(GroqResponse, response)
            if return_full_response:
                return response
            else:
                return cast(str, response.choices[0].message.content)

    except Exception as e:
        raise self._map_exception_to_clientai_error(e)

generate_text(prompt, model, system_prompt=None, return_full_response=False, stream=False, json_output=False, temperature=None, top_p=None, **kwargs)

Generate text based on a given prompt using a specified Groq model.

Parameters:

Name Type Description Default
prompt str

The input prompt for text generation.

required
model str

The name or identifier of the Groq model to use.

required
system_prompt Optional[str]

Optional system prompt to guide model behavior. If provided, will be added as a system message before the prompt.

None
return_full_response bool

If True, return the full response object. If False, return only the generated text. Defaults to False.

False
stream bool

If True, return an iterator for streaming responses. Defaults to False.

False
json_output bool

If True, format the response as valid JSON using Groq's native JSON mode (beta). Note that this is incompatible with streaming and stop sequences. Will return a 400 error with code "json_validate_failed" if JSON generation fails. Defaults to False.

False
temperature Optional[float]

Optional temperature value (0.0-2.0). Controls randomness in generation. Lower values make the output more focused and deterministic, higher values make it more creative.

None
top_p Optional[float]

Optional nucleus sampling parameter (0.0-1.0). Controls diversity by limiting cumulative probability in token selection.

None
**kwargs Any

Additional keyword arguments to pass to the Groq API.

{}

Returns:

Name Type Description
GroqGenericResponse GroqGenericResponse

The generated text, full response object,

GroqGenericResponse

or an iterator for streaming responses.

Raises:

Type Description
InvalidRequestError

If json_output and stream are both True.

ClientAIError

If an error occurs during the API call.

Example

Generate text (text only):

response = provider.generate_text(
    "Explain quantum computing",
    model="llama3-8b-8192",
)
print(response)

Generate text (full response):

response = provider.generate_text(
    "Explain quantum computing",
    model="llama3-8b-8192",
    return_full_response=True
)
print(response.choices[0].message.content)

Generate JSON output:

response = provider.generate_text(
    '''Create a user profile with:
    {
        "name": "A random name",
        "age": "A random age between 20-80",
        "occupation": "A random occupation"
    }''',
    model="llama3-8b-8192",
    json_output=True
)
print(response)  # Will be valid JSON

Source code in clientai/groq/provider.py
def generate_text(
    self,
    prompt: str,
    model: str,
    system_prompt: Optional[str] = None,
    return_full_response: bool = False,
    stream: bool = False,
    json_output: bool = False,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    **kwargs: Any,
) -> GroqGenericResponse:
    """
    Generate text based on a given prompt using a specified Groq model.

    Args:
        prompt: The input prompt for text generation.
        model: The name or identifier of the Groq model to use.
        system_prompt: Optional system prompt to guide model behavior.
                       If provided, will be added as a system message
                       before the prompt.
        return_full_response: If True, return the full response object.
            If False, return only the generated text. Defaults to False.
        stream: If True, return an iterator for streaming responses.
            Defaults to False.
        json_output: If True, format the response as valid JSON using
            Groq's native JSON mode (beta). Note that this is incompatible
            with streaming and stop sequences. Will return a 400 error with
            code "json_validate_failed" if JSON generation fails. Defaults
            to False.
        temperature: Optional temperature value (0.0-2.0).
                     Controls randomness in generation.
                     Lower values make the output more focused
                     and deterministic, higher values make it
                     more creative.
        top_p: Optional nucleus sampling parameter (0.0-1.0).
               Controls diversity by limiting cumulative probability
               in token selection.
        **kwargs: Additional keyword arguments to pass to the Groq API.

    Returns:
        GroqGenericResponse: The generated text, full response object,
        or an iterator for streaming responses.

    Raises:
        InvalidRequestError: If json_output and stream are both True.
        ClientAIError: If an error occurs during the API call.

    Example:
        Generate text (text only):
        ```python
        response = provider.generate_text(
            "Explain quantum computing",
            model="llama3-8b-8192",
        )
        print(response)
        ```

        Generate text (full response):
        ```python
        response = provider.generate_text(
            "Explain quantum computing",
            model="llama3-8b-8192",
            return_full_response=True
        )
        print(response.choices[0].message.content)
        ```

        Generate JSON output:
        ```python
        response = provider.generate_text(
            '''Create a user profile with:
            {
                "name": "A random name",
                "age": "A random age between 20-80",
                "occupation": "A random occupation"
            }''',
            model="llama3-8b-8192",
            json_output=True
        )
        print(response)  # Will be valid JSON
        ```
    """
    try:
        self._validate_temperature(temperature)
        self._validate_top_p(top_p)

        messages: List[Optional[Message]] = []
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})
        messages.append({"role": "user", "content": prompt})

        completion_kwargs: dict[str, Any] = {
            "model": model,
            "messages": messages,
            "stream": stream,
        }
        if json_output:
            completion_kwargs["response_format"] = {"type": "json_object"}
        if temperature is not None:
            completion_kwargs["temperature"] = temperature
        if top_p is not None:
            completion_kwargs["top_p"] = top_p
        completion_kwargs.update(kwargs)

        response = self.client.chat.completions.create(**completion_kwargs)

        if stream:
            return cast(
                GroqGenericResponse,
                self._stream_response(
                    cast(Iterator[GroqStreamResponse], response),
                    return_full_response,
                ),
            )
        else:
            response = cast(GroqResponse, response)
            if return_full_response:
                return response
            else:
                return cast(str, response.choices[0].message.content)

    except Exception as e:
        raise self._map_exception_to_clientai_error(e)