ToolSelector Class API Reference¶
The ToolSelector
class handles the automatic selection and execution of tools using LLM-based decision making.
Class Definition¶
Manages the automatic selection and execution of tools using LLM-based decision making.
The ToolSelector uses a language model to analyze tasks and determine which tools would be most appropriate to use, considering both the task requirements and the current context. It provides a complete pipeline for tool selection, validation, and execution with comprehensive error handling and logging.
The selector's key responsibilities include: 1. Analyzing tasks and context to determine tool requirements 2. Selecting appropriate tools based on capabilities and confidence 3. Validating tool arguments before execution 4. Managing tool execution and error handling 5. Providing detailed logging and error reporting
Key Features
- LLM-based tool selection with context awareness
- Configurable confidence thresholds for tool selection
- Automatic argument validation against tool signatures
- Comprehensive error handling and recovery
- Detailed execution logging and debugging support
- Context-aware decision making
Attributes:
Name | Type | Description |
---|---|---|
config |
Configuration for tool selection behavior, including confidence thresholds and tool limits |
|
model_config |
Configuration for the LLM used in selection, including model name and parameters |
Example
# Initialize selector with custom configuration
selector = ToolSelector(
config=ToolSelectionConfig(
confidence_threshold=0.8,
max_tools_per_step=3
),
model_config=ModelConfig(
name="gpt-4",
temperature=0.0
)
)
# Select tools for a task with context
decisions = selector.select_tools(
task="Calculate the average daily sales",
tools=[calculator, aggregator],
context={"sales_data": [100, 200, 300]},
client=llm_client
)
# Execute the selected tools
results = selector.execute_tool_decisions(
decisions=decisions,
tools={"calculator": calculator, "aggregator": aggregator}
)
# Process results
for result in results:
if result.error:
print(f"Error in {result.tool_name}: {result.error}")
else:
print(f"Result from {result.tool_name}: {result.result}")
Source code in clientai/agent/tools/selection/selector.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
__init__(model_config, config=None)
¶
Initialize the ToolSelector with the specified configurations.
Sets up the selector with either provided configurations or defaults. Initializes logging and validates configuration parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_config
|
ModelConfig
|
Configuration for the LLM used in selection. |
required |
config
|
Optional[ToolSelectionConfig]
|
Configuration for tool selection behavior. If None, uses default configuration with standard thresholds and limits. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If provided configurations contain invalid values. |
Example
Source code in clientai/agent/tools/selection/selector.py
execute_tool_decisions(decisions, tools)
¶
Execute a series of tool decisions and capture their results.
Takes a list of validated tool selection decisions and executes each tool with its specified arguments. Updates the decision objects with either results or error messages from the execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
decisions
|
List[ToolCallDecision]
|
List of ToolCallDecision objects containing tool selections and their arguments. |
required |
tools
|
Dict[str, Tool]
|
Dictionary mapping tool names to Tool instances that will be executed. |
required |
Returns:
Type | Description |
---|---|
List[ToolCallDecision]
|
The same list of decisions, updated with execution results or |
List[ToolCallDecision]
|
error messages in case of failures. |
Example
# Execute multiple tool decisions
updated_decisions = selector.execute_tool_decisions(
decisions=[
ToolCallDecision(
tool_name="calculator",
arguments={"x": 5, "y": 3},
confidence=0.9,
reasoning="Need to add numbers"
),
ToolCallDecision(
tool_name="formatter",
arguments={"text": "hello"},
confidence=0.8,
reasoning="Need to format text"
)
],
tools={
"calculator": calculator_tool,
"formatter": formatter_tool
}
)
# Process results
for decision in updated_decisions:
if decision.error:
print(
f"Error in {decision.tool_name}: {decision.error}"
)
else:
print(
f"Result from {decision.tool_name}: {decision.result}"
)
Notes
- Each decision is executed independently
- Execution errors in one decision don't prevent others from executing
- Original decision objects are modified with results/errors
- All execution attempts are logged for debugging
- Tools are executed with their provided arguments without modification
- Results can be any type that the tools return
- Errors are captured as strings in the decision object
Raises:
Type | Description |
---|---|
KeyError
|
If a tool name in decisions isn't found in the tools dictionary |
Exception
|
Any exception from tool execution is caught and stored in the decision's error field |
Source code in clientai/agent/tools/selection/selector.py
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
select_tools(task, tools, context, client)
¶
Use LLM to select appropriate tools for a given task.
Analyzes the task description, available tools, and current context to determine which tools would be most appropriate to use. Makes selections based on confidence thresholds, validates arguments, and provides reasoning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task
|
str
|
Description of the task to accomplish. |
required |
tools
|
List[Tool]
|
List of available tools to choose from. |
required |
context
|
Dict[str, Any]
|
Current execution context and state information. |
required |
client
|
Any
|
LLM client for making selection decisions. |
required |
Returns:
Type | Description |
---|---|
List[ToolCallDecision]
|
List of ToolCallDecision objects containing selected tools, |
List[ToolCallDecision]
|
arguments, confidence levels, and reasoning. |
Raises:
Type | Description |
---|---|
StepError
|
If LLM interaction fails. |
ToolError
|
If tool validation fails. |
Example
decisions = selector.select_tools(
task="Calculate average daily sales increase",
tools=[calculator, aggregator],
context={"sales_data": [100, 200, 300]},
client=llm_client
)
for decision in decisions:
print(f"Selected: {decision.tool_name}")
print(f"Arguments: {decision.arguments}")
print(f"Confidence: {decision.confidence}")
Source code in clientai/agent/tools/selection/selector.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
|