AgentContext Class API Reference¶
The AgentContext
class maintains state, memory, and results across agent workflow steps. It provides a structured way to store and access data during agent execution.
Class Definition¶
Maintains state, memory, and execution results for an agent.
This class serves as a central repository for maintaining agent state across workflow executions. It stores step results, tracks conversation history, maintains iteration counts, and stores arbitrary state data needed during workflow execution.
Attributes:
Name | Type | Description |
---|---|---|
memory |
List[Dict[str, str]]
|
List of dictionaries storing step-by-step execution memory. |
state |
Dict[str, Any]
|
Dictionary storing arbitrary state information for the agent. |
last_results |
Dict[str, Any]
|
Dictionary mapping steps to their most recent results. |
current_input |
Any
|
The current input being processed by the workflow. |
original_input |
Any
|
Original input stored separately from current_input. |
conversation_history |
List[Dict[str, Any]]
|
List of previous interactions with their results. |
max_history_size |
int
|
Maximum number of previous interactions to maintain. |
iteration |
int
|
Counter tracking the number of workflow iterations. |
Example
Initialize and manipulate the context:
context = AgentContext()
# Set new input
context.set_input("What is Python?")
# Store a step result
context.set_step_result("analyze", "Python is a programming language")
# Access conversation history
history = context.get_recent_history(n=2)
print(history) # Shows last 2 interactions
# Reset the context but keep history
context.clear()
Source code in clientai/agent/core/context.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
clear()
¶
Reset the current interaction but preserve conversation history.
Clears current state, memory, and results while maintaining the conversation history.
Example
Source code in clientai/agent/core/context.py
clear_all()
¶
Reset everything including conversation history.
Performs a complete reset of the context, including all history.
Example
Source code in clientai/agent/core/context.py
get_recent_history(n=None, raw=False)
¶
Get recent interactions with formatted context for LLM.
Retrieves recent interactions either as formatted text for LLM context or as raw data structures for programmatic use.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
Optional[int]
|
Number of recent interactions to retrieve. Defaults to all within max_size. |
None
|
raw
|
bool
|
If True, returns raw data structure. If False, returns formatted string. |
False
|
Returns:
Type | Description |
---|---|
Union[str, List[Dict[str, Any]]]
|
Either a formatted string of conversation history suitable for LLM |
Union[str, List[Dict[str, Any]]]
|
context, or the raw list of interaction dictionaries. |
Example
Source code in clientai/agent/core/context.py
get_step_result(step_name)
¶
Retrieve the result of a specific workflow step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
step_name
|
str
|
Name of the step whose result should be retrieved. |
required |
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
The stored result for the specified step, or None if no result exists. |
Example
Source code in clientai/agent/core/context.py
increment_iteration()
¶
Increment and return the workflow iteration counter.
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The new iteration count after incrementing. |
Example
Source code in clientai/agent/core/context.py
set_input(input_data)
¶
Set new input and save previous interaction to history.
Stores the current interaction in history (if exists) and sets up for a new interaction. Maintains maximum history size by removing oldest interactions when limit is reached.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_data
|
Any
|
The new input to process. |
required |
Example
Source code in clientai/agent/core/context.py
set_max_history_size(size)
¶
Update the maximum history size and trim if necessary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size
|
int
|
New maximum number of interactions to maintain. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If size is negative. |
Source code in clientai/agent/core/context.py
set_step_result(step_name, result)
¶
Store the result of a workflow step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
step_name
|
str
|
Name of the step whose result is being stored. |
required |
result
|
Any
|
The result value to store. |
required |